Chapter 31: Images/Optical Instruments Tuesday November 29th

- V. IMPORTANT: Final exam will be in HCB103/316
 - HCB316, last names A to J; HCB103, last names K to Z
- Mini-exam 6 on Thu. (Chs. 30/31, LONCAPA 21-23)
- Check your exam scores online
- Still 42 unregistered *i*Clickers; send email if unsure.

- •Review: images, mirrors and lenses (Ch. 31)
- \cdot The human eye
- Vision correction
- Microscopes and telescopes (if time)

Reading: up to page 560 in the text book (Ch. 31)

Ray Tracing with Mirrors

Summary for curved mirrors

Table 31.1 Image Formation with Mirrors: Sign Conventions

Focal Length, f	Object Distance, s	Image Distance, s′	Type of Image	Ray Diagram
+ (concave)	+ (in front of mirror) s > 2f	+ (in front of mirror) s' < 2f	Real, inverted, reduced	
+ (concave)	+ (in front of mirror) 2f > s > f	+ (in front of mirror) s' > 2f	Real, inverted, enlarged	
+ (concave)	+ (in front of mirror) s < f	– (behind mirror)	Virtual, upright, enlarged	
– (convex)	+ (in front of mirror)	– (behind mirror)	Virtual, upright, reduced	

Ray Tracing with Concave Lenses Virtual image same side of lens (f < 0, s' < 0)

Summary for Lenses Table 31.2 Image Formation with Lenses: Sign Conventions

Focal Length, f	Object Distance, s	Image Distance, s'	Type of Image	Ray Diagram
+ (convex)	+ s > 2f	+ (opposite side of lens) 2f > s' > f	Real, inverted, reduced	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ (convex)	+ 2f > s > f	+ (opposite side of lens) s' > 2f	Real, inverted, enlarged	2f > s > f f f f f f
+ (convex)	+ s < f	– (same side of lens)	Virtual, upright, enlarged	$ \begin{array}{c} s < f \\ f \\ I \\ $
(concave)	+	– (same side of lens)	Virtual, upright, reduced	F O I

The Human Eye

- The human eye is a complex optical instrument.
 - Refraction in the cornea, in the fluids of the eye ("humors"), and in the lens should form an image on the retina.
 - Most of the refraction occurs in the cornea.
 - The lens changes shape to adjust for different object distances.
 - Special cells in the retina respond to light by sending electrochemical signals to the brain through the optic nerve.

Hyperopia (farsightedness)

Image of nearby object forms behind the retina

> A converging lens corrects the problem by creating a virtual image further from the eye

Power of Lenses

- Everyone has a near point.
- Normal eyes can't focus objects much closer than 25cm.
- This distance tends to increase with age, requiring corrective (converging) reading glasses.

Corrective Power, P:

$$P = \frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$$

- Measured in <u>diopters</u> inverse of focal length in meters.
- A 1-diopter lens has a 1 m focal length, a 2-diopter lens has f = 0.5 m.
- Note: f < 0 for diverging lens, so P can be both positive and negative.